Phenotypic and Biotypic Characterization of Klebsiella oxytoca: An Impact of Biofield Treatment

By Mahendra Kumar Trivedi1, Shrikant Patil1, Harish Shettigar1, Khemraj Bairwa2, Snehasis Jana2

1. Trivedi Global Inc. 2. Trivedi Science Research Laboratory Pvt. Ltd.

Published on


Klebsiella oxytoca (K. oxytoca) is a Gram-negative microbe generally associated with community and hospital-acquired infections. Due to its clinical significance, we evaluated the effect of biofield treatment on phenotype and biotype characteristics of K. oxytoca (ATCC 43165). The study was performed into three groups i.e. C (control), T1 (treatment, revived); and T2 (treatment, lyophilized). Subsequently, groups T1 and T2 were received biofield treatment and control group was remained as untreated. The antimicrobial sensitivity results showed 3.33% and 6.67% alteration in antimicrobials susceptibility in group T1 cells on day 5 and 10, respectively, and 3.33% alteration in antimicrobials susceptibility was observed in group T2 cells on day 10 as compared to control. The sensitivity patterns of cefazolin were changed from resistant (R) to intermediate (I) on day 5, and resistance (R) to susceptible (S) on day 10, in T1 cells of K. oxytoca. The MIC value of cefazolin was decreased by 2-fold in group T1 on day 10 as compared to control. The biofield treated K. oxytoca exhibited the changes in biochemical reactions about 3.03% and 15.15% of total tested biochemicals in group T1 cells on day 5 and 10, respectively as compared to control. The biotype number of K. oxytoca was altered in biofield treated group and organism identified as Raoultella ornithinolytica in T1 on day 10 as compared to control, which is the prominent finding of this study. These changes were found in treated bacteria that might be due to some alteration happened in metabolic/enzymatic pathway and/or at genetic level of K. oxytoca. Based on these data, it is speculated that biofiled treatment could be an alternative approach that can improve the effectiveness of the existing antimicrobials against the resistant pathogens.


1. WHO (2014) Antimicrobial resistance

2. WHO (2014) WHO’s first global report on antibiotic resistance reveals serious, worldwide threat to public health.

3. Hori K Yasoshima H, Yamada A, Sakurai K, Ohkubo E, et al. (1998) Adrenal hemorrhage associated with Klebsiella oxytoca bacteremia. Intern Med 37: 990-994.

4. Wu SW, Dornbusch K, Göransson E, Ransjö U, Kronvall G (1991) Characterization of Klebsiella oxytoca septicaemia isolates resistant to aztreonam and cefuroxime. J Antimicrob Chemother 28: 389-397.

5. Nathisuwan S, Burgess DS, Lewis JS 2nd (2001) Extended-spectrum beta-lactamases: epidemiology, detection, and treatment. Pharmacotherapy 21: 920-928.

6. Trivedi MK, Bhardwaj Y, Patil S, Shettigar H, Bulbule, A (2009) Impact of an external energy on Enterococcus faecalis [ATCC-51299] in relation to antibiotic susceptibility and biochemical reactions-an experimental study. J Accord Integr Med 5: 119-130.

7. Hasenohrl F (1904) On the Theory of Radiation in Moving Bodies. Ann Phys 320: 344-370.

8. Einstein A (1905) Does the inertia of a body depend upon its energy-content. Ann Phys 18: 639-641

9. Becker RO, Selden G (1985) William Morrow and Company. The body electric: electromagnetism and the foundation of life, New York, USA.

10. Barnes RB (1963) Thermography of the human body. Science 140: 870-877.

11. Rubik B (2002) The biofield hypothesis: its biophysical basis and role in medicine. J Altern Complement Med 8: 703-717.

12. Trivedi MK, Tallapragada RR (2009) Effect of superconsciousness external energy on atomic, crystalline and powder characteristics of carbon allotrope powders. Mater Res Innov 13: 473-480.

13. Trivedi MK, Patil S, Tallapragada RM (2014) Atomic, crystalline and powder characteristics of treated zirconia and silica powders. J Material Sci Eng 3: 144.

14. Trivedi MK, Patil S, Tallapragada RM (2013) Effect of biofield treatment on the physical and thermal characteristics of vanadium pentoxide powders. J Material Sci Eng S11: 001.

15. Lenssen AW (2013) Biofield and fungicide seed treatment influences on soybean productivity, seed quality and weed community. Agricultural Journal 8: 138-143.

16. Patil SA, Nayak GB, Barve SS, Tembe RP, Khan RR (2012) Impact of biofield treatment on growth and anatomical characteristics of Pogostemon cablin (Benth). Biotechnology 11: 154-162.

17. Trivedi MK, Patil S (2008) Impact of an external energy on Yersinia enterocolitica [ATCC-23715] in relation to antibiotic susceptibility and biochemical reactions: an experimental study. Internet J Alternat Med 6.

18. Trivedi MK, Patil S (2008) Impact of an external energy on Staphylococcus epidermis [ATCC-13518] in relation to antibiotic susceptibility and biochemical reactions-an experimental study. J Accord Integr Med 4: 230-235.

19. Overman TL, Janda JM (1999) Antimicrobial susceptibility patterns of Aeromonas jandaei, A. schubertii, A. trota, and A. veronii biotype veronii. J Clin Microbiol 37: 706-708.

20. Fader RC, Weaver E, Fossett R, Toyras M, Vanderlaan J, et al. (2013) Multilaboratory study of the biomic automated well-reading instrument versus MicroScan WalkAway for reading MicroScan antimicrobial susceptibility and identification panels. J Clin Microbiol 51: 1548-1554.

21. Gomaa FM, Tawakol WM, Abo El-Azm FI (2014) Phenotypic and genotypic detection of some antimicrobial resistance mechanisms among multidrug-resistant Acinetobacter baumannii isolated from immunocompromised patients in Egypt. Egypt J Med Microbiol 23: 99-111.

22. Hansen DS, Aucken HM, Abiola T, Podschun R (2004) Recommended test panel for differentiation of Klebsiella species on the basis of a trilateral interlaboratory evaluation of 18 biochemical tests. J Clin Microbiol 42: 3665-3669.

23. Sader HS, Fritsche TR, Jones RN (2006) Accuracy of three automated systems (MicroScan WalkAway, VITEK, and VITEK 2) for susceptibility testing of Pseudomonas aeruginosa against five broad-spectrum beta-lactam agents. J Clin Microbiol 44: 1101-1104.

24. Chen Z, Jiang X (2014) Microbiological safety of chicken litter or chicken litter-based organic fertilizers: a review. Agriculture 4: 1-29.

25. Fenosa A, Fusté E, Ruiz L, Veiga-Crespo P, Vinuesa T, et al. (2009) Role of TolC in Klebsiella oxytoca resistance to antibiotics. J Antimicrob Chemother 63: 668-674.

26. Yigit H, Queenan AM, Rasheed JK, Biddle JW, Domenech-Sanchez A, et al. (2003) Carbapenem-resistant strain of Klebsiella oxytoca harboring carbapenem-hydrolyzing beta-lactamase KPC-2. Antimicrob Agents Chemother 47: 3881-3889.

27. Alves MS, Dias RC, de Castro AC, Riley LW, Moreira BM (2006) Identification of clinical isolates of indole-positive and indole-negative Klebsiella spp. J Clin Microbiol 44: 3640-3646.

28. Stock I, Wiedemann B (2001) Natural antibiotic susceptibility of Klebsiella pneumoniae, K. oxytoca, K. planticola, K. ornithinolytica and K. terrigena strains. J Med Microbiol 50: 396-406.

Cite this work

Researchers should cite this work as follows:

  • Trivedi MK, Patil S, Shettigar H, Bairwa K, Jana S (2015) Phenotypic and Biotypic Characterization of Klebsiella oxytoca: An Impact of Biofield Treatment. J Microb Biochem Technol 7:4 202-205. doi:10.4172/1948-5948.1000205

  • Mahendra Kumar Trivedi; Shrikant Patil; Harish Shettigar; Khemraj Bairwa; Snehasis Jana (2019), "Phenotypic and Biotypic Characterization of Klebsiella oxytoca: An Impact of Biofield Treatment,"

    BibTex | EndNote