Antibiogram and Genotypic Analysis using 16S rDNA after Biofield Treatment on Morganella morganii

By Mahendra Kumar Trivedi1, Alice Branton1, Dahryn Trivedi1, Gopal Nayak1, Mayank Gangwar2, Snehasis Jana2

1. Trivedi Global Inc. 2. Trivedi Science Research Laboratory Pvt. Ltd.

Published on


Morganella morganii (M. morganii) is one of the important nosocomial pathogen associated with the urinary tract infections and bacteremia. The aim of this study was to evaluate the effect of Mr. Trivedi’s biofield energy treatment on M. morganii in the lyophilized as well as revived state for antimicrobial susceptibility pattern, biochemical characteristics, biotype number and genotype. M. morganii cells were procured from MicroBioLogics Inc., USA in sealed packs bearing the American Type Culture Collection (ATCC 25829) number and stored according to the recommended storage protocols until needed for experiments. M. morganii strain was divided into two groups, Group (Gr.) I: control and Gr. II: treated. Gr. II was further subdivided into two groups, Gr. IIA and Gr. IIB. Gr. IIA was analyzed on day 10, while Gr. IIB was stored and analyzed on day 142 (Study I). After retreatment on day 142, the sample (Study II) was divided into three separate tubes. First, second and third tube was further analyzed on day 5, 10 and 15 respectively. All experimental parameters were studied using the automated MicroScan Walk-Away® system. The 16S rDNA sequencing of lyophilized treated sample was carried out to correlate the phylogenetic relationship of M. morganii with other bacterial species. Antimicrobial susceptibility results showed 32.14% alterations, while minimum inhibitory concentration results showed 18.75% alterations of the tested antimicrobials. Biochemical study also showed altered positive reactions in nitrofurantoin and indole with respect to control. Biotype study showed alteration in Gr. IIB, study II, on day 15 (4005 1446) as compared to the control (4004 1446). 16S rDNA sequencing analysis showed similar results with the identified microbe as M. morganii (GenBank accession number: AB210972) having 80% identity of the gene sequencing data. Total 1507 base nucleotide of 16S rDNA gene sequences were analyzed by multiple alignments, while nearest homolog genus-species of M. morganii was found as Providencia rettgeri (accession number: AM040492). These results suggested that biofield treatment has a significant impact on M. morganii in lyophilized as well as revived state.


1. Braunstein H, Tomasulo M (1978) Identification of Proteus morganii and distinction from other Proteus species. Am J Clin Pathol 70: 905-908.

2. Falagas ME, Kavvadia PK, Mantadakis E, Kofteridis DP, Bliziotis IA, et al. (2006) Morganella morganii infections in a general tertiary hospital. Infection 34: 315-321.

3. Lin TY, Chan MC, Yang YS, Lee Y, Yeh KM, et al. (2015) Clinical manifestations and prognostic factors of Morganella morganii bacteremia. Eur J Clin Microbiol Infect Dis 34: 231-236.

4. Nicolle LE, Strausbaugh LJ, Garibaldi RA (1996) Infections and antibiotic resistance in nursing homes. Clin Microbiol Rev 9: 1-17.

5. Warren JW, Tenney JH, Hoopes JM, Muncie HL, Anthony WC (1982) A prospective microbiologic study of bacteriuria in patients with chronic indwelling urethral catheters. J Infect Dis 146: 719-723.

6. McDermott C, Mylotte JM (1984) Morganella morganii: Epidemiology of bacteremic disease. Infect Control 5: 131-137.

7. Kim BN, Kim NJ, Kim MN, Kim YS, Woo JH, et al. (2003) Bacteraemia due to tribe Proteeae: A review of 132 cases during a decade (1991-2000). Scand J Infect Dis 35: 98-103.

8. Bush K, Jacoby GA, Medeiros AA (1995) A functional classification scheme for beta-lactamases and its correlation with molecular structure. Antimicrob Agents Chemother 39: 1211-1233.

9. Stock I, Wiedemann B (1998) Identification and natural antibiotic susceptibility of Morganella morganii. Diagn Microbiol Infect Dis 30: 153-165.

10. Movaffaghi Z, Farsi M (2009) Biofield therapies: Biophysical basis and biological regulations? Complement Ther Clin Pract 15: 35-37.

11. Cahil M (1998) Nurses handbook of complementary and alternative therapies. Springhouse, PA: Springhouse Corporation.

12. Schwartz GE, Simon WL, Carmona R (2007) The energy healing experiments: Science reveals our natural power to heal. (1stedn), Atria Books.

13. Trivedi MK, Nayak G, Patil S, Tallapragada RM, Latiyal O (2015) Studies of the atomic and crystalline characteristics of ceramic oxide nano powders after bio field treatment. Ind Eng Manage 4: 161.

14. Trivedi MK, Patil S, Nayak G, Jana S, Latiyal O (2015) Influence of biofield treatment on physical, structural and spectral properties of boron nitride. J Material Sci Eng 4: 181.

15. Trivedi MK, Nayak G, Patil S, Tallapragada RM, Latiyal O (2015) Evaluation of biofield treatment on physical, atomic and structural characteristics of manganese (II, III) oxide. J Material Sci Eng 4: 177.

16. Sances F, Flora E, Patil S, Spence A, Shinde V (2013) Impact of biofield treatment on ginseng and organic blueberry yield. Agrivita J Agric Sci 35: 22-29.

17. Lenssen AW (2013) Biofield and fungicide seed treatment influences on soybean productivity, seed quality and weed community. Agricultural Journal 83: 138-143.

18. Trivedi MK, Patil S, Shettigar H, Bairwa K, Jana S (2015) Phenotypic and biotypic characterization of Klebsiella oxytoca: An impact of biofield treatment. J Microb Biochem Technol 7: 203-206.

19. Trivedi MK, Patil S, Shettigar H, Gangwar M, Jana S (2015) An effect of biofield treatment on multidrug-resistant Burkholderia cepacia: A multihost pathogen. J Trop Dis 3: 167.

20. Trivedi MK, Patil S, Shettigar H, Gangwar M, Jana S (2015) Antimicrobial sensitivity pattern of Pseudomonas fluorescens after biofield treatment. J Infect Dis Ther 3: 222.

21. Patil SA, Nayak GB, Barve SS, Tembe RP, Khan RR (2012) Impact of biofield treatment on growth and anatomical characteristics of Pogostemon cablin (Benth.). Biotechnology 11: 154-162.

22. Nayak G, Altekar N (2015) Effect of biofield treatment on plant growth and adaptation. J Environ Health Sci 1: 1-9.

23. Fader RC, Weaver E, Fossett R, Toyras M, Vanderlaan J, et al. (2013) Multi-laboratory study of the biomic automated well-reading instrument versus MicroScan WalkAway for reading MicroScan antimicrobial susceptibility and identification panels. J Clin Microbiol 51: 1548-1554.

24. Kumar S, Tamura K, Nei M (2004) MEGA3: Integrated software for Molecular Evolutionary Genetics Analysis and sequence alignment. Brief Bioinform 5: 150-163.

25. Alm EW, Oerther DB, Larsen N, Stahl DA, Raskin L (1996) The oligonucleotide probe database. Appl Environ Microbiol 62: 3557-3559.

26. Williams EW, Hawkey PM, Penner JL, Senior BW, Barton LJ (1983) Serious nosocomial infection caused by Morganella morganii and Proteus mirabilis in a cardiac surgery unit. J Clin Microbiol 18: 5-9.

27. O'Hara CM, Brenner FW, Miller JM (2000) Classification, identification, and clinical significance of Proteus, Providencia, and Morganella. Clin Microbiol Rev 13: 534-546.

28. Yang YJ, Livermore DM (1988) Chromosomal beta-lactamase expression and resistance to beta-lactam antibiotics in Proteus vulgaris and Morganella morganii. Antimicrob Agents Chemother 32: 1385-1391.

29. Jacoby GA (2009) AmpC beta-lactamases. Clin Microbiol Rev 22: 161-182.

30. Barnaud G, Arlet G, Verdet C, Gaillot O, Lagrange PH, et al. (1998) Salmonella enteritidis: AmpC plasmid-mediated inducible beta-lactamase (DHA-1) with an ampR gene from Morganella morganii. Antimicrob Agents Chemother 42: 2352-2358.

31. MacFaddin JF (2000) Biochemical tests for identification of medical bacteria. (3rdedn), Lippincott Williams and Wilkins, Philadelphia, PA.

32. Woese CR (1987) Bacterial evolution. Microbiol Rev 51: 221-271.

33. Drancourt M, Bollet C, Carlioz A, Martelin R, Gayral JP, et al. (2000) 16S ribosomal DNA sequence analysis of a large collection of environmental and clinical unidentifiable bacterial isolates. J Clin Microbiol 38: 3623-3630.

34. Koithan M (2009) Introducing Complementary and Alternative Therapies. J Nurse Pract 5: 18-20.


36. Hintz KJ, Yount GL, Kadar I, Schwartz G, Hammerschlag R, et al. (2003) Bioenergy definitions and research guidelines. Altern Ther Health Med 9: A13-30.

Cite this work

Researchers should cite this work as follows:

  • Trivedi MK, Branton A, Trivedi D, Nayak G, Gangwar M, et al. (2015) Antibiogram and Genotypic Analysis using 16S rDNA after Biofield Treatment on Morganella morganii. Adv Tech Biol Med 3: 137. doi: 10.4172/2379-1764.1000137

  • Mahendra Kumar Trivedi; Alice Branton; Dahryn Trivedi; Gopal Nayak; Mayank Gangwar; Snehasis Jana (2019), "Antibiogram and Genotypic Analysis using 16S rDNA after Biofield Treatment on Morganella morganii,"

    BibTex | EndNote