Antimicrobial Susceptibility, Biochemical Characterization and Molecular Typing of Biofield Treated Klebsiella pneumoniae

By Mahendra Kumar Trivedi1, Alice Branton1, Dahryn Trivedi1, Mayank Gangwar2, Snehasis Jana2

1. Trivedi Global Inc. 2. Trivedi Science Research Laboratory Pvt. Ltd.

Published on

Abstract

Pathogenic isolates of Klebsiella pneumoniae (K. pneumoniae), particularly the extended-spectrum β-lactamase (ESBL) producing strains, are mostly associated with the failure of antibiotic therapy in nosocomial infections. The present work was designed to evaluate the impact of Mr. Trivedi’s biofield energy treatment on phenotypic and genotypic characteristics of K. pneumoniae. The strain of K. pneumoniae bearing ATCC 15380 (American Type Culture Collection) was procured from the Bangalore Genei, in sealed pack and divided into control and treated groups. Treated group was subjected to Mr. Trivedi’s biofield energy treatment and analyzed for the antimicrobial susceptibility, minimum inhibitory concentration (MIC), biochemical reactions, and biotyping using automated MicroScan Walk-Away® system. Further, the effect of biofield treatment was also evaluated using Random Amplified Polymorphic DNA (RAPD) in order to determine their epidemiological relatedness and genetic characteristics of biofield treated K. pneumoniae samples. The antimicrobial susceptibility results showed an improve sensitivity (i.e. from intermediate to susceptible) of ampicillin/sulbactam and chloramphenicol, while altered sensitivity of cephalothin (i.e. from susceptible to intermediate) was also reported as compared to the control sample. The MIC value showed two-fold decrease in MIC value of ampicillin/sulbactam (i.e. 16/8 to ≤8/4 µg/mL) and chloramphenicol (i.e. 16 to ≤ 8 µg/mL) as compared to the control. The cephalothin showed two-folds change (i.e. ≤ 8 to 16 µg/mL) in the MIC value as compared with the control. Biofield treatment showed 9.09% alterations in biochemical reactions followed by a change in biotype number (7774 4272) in the treated group with respect to the control (7774 4274). Genetic fingerprinting was performed on control and treated samples using RAPD-PCR biomarkers, which showed an average range of 11 to 15% of polymorphism among the treated samples with respect to the control. These results suggested that Mr. Trivedi’s biofield energy treatment has a significant impact on K. pneumoniae.

References

1. Podschun R, Ullmann U (1998) Klebsiella spp. as nosocomial pathogens: Epidemiology, taxonomy, typing methods, and pathogenicity factors. Clin Microbiol Rev 11: 589-603.

2. Chetoui H, Delhalle E, et al. (1999) Epidemiological typing of extended spectrum b-lactamase-producing Klebsiella pneumoniae isolates by pulsed-field gel electrophoresis and antibiotic susceptibility patterns. Res Microbiol 150: 265-272.

3. Vernet V, Philippon A, et al. (1995) Virulence factors (aerobactin and mucoid phenotype) in Klebsiella pneumoniae and E. coli blood culture isolates. FEMS Microbiol Lett 130: 51-57.

4. Corkill JE, Cuevas LE, Guegel RQ, Greensill J, Hart CA (2001) SHV-27, a novel cefotaxime-hydrolysing beta-lactamase, identified in Klebsiella pneumoniae isolates from a Brazilian hospital. J Antimicrob Chemother 47: 463-465.

5. Trivedi MK, Patil S, Shettigar H, Bairwa K, Jana S (2015) Phenotypic and biotypic characterization of Klebsiella oxytoca: An impact of biofield treatment. J Microb Biochem Technol 7: 203-206.

6. Rubik B, Brooks AJ, Schwartz GE (2006) In vitro effect of Reiki treatment on bacterial cultures: Role of experimental context and practitioner wellbeing. J Altern Complement Med 12: 7-13.

7. Chein CH, Tsuei JJ, Lee SC, Huang YC, Wei YH (1991) Effect of emitted bioenergy on biochemical function of cells. Am J Chin Med 19: 285-292.

8. Mo Z, Chen KW, Ou W, Li M (2003) Benefits of external qigong therapy on morphine-abstinent mice and rats. J Altern Complement Med 9: 827-835.

9. Movaffaghi Z, Hassanpoor M, Farsi M, Hooshmand P, Abrishami F (2006) Effects of therapeutic touch on blood hemoglobin and hematocrit level. J Holist Nurs 24: 41-48.

10. Olson M, Sneed N, et al. (1997) Stress-induced immunosuppression and therapeutic touch. Altern Ther Health Med 3: 68-74.

11. Wirth DP (1990) The effect of none contact therapeutic touch on the healing rate of full thickness dermal wounds. Subtle Energies 1: 1-20.

12. Jain S, Mills PJ (2010) Biofield therapies: Helpful or full of hype? A best evidence synthesis. Int J Behav Med 17: 1-16.

13. Oschman JL (2000) Energy medicine: The scientific base. (2ndedn). Edinburgh: Churchill Livingston.

14. Trivedi MK, Tallapragada RR (2008) A transcendental to changing metal powder characteristics. Met Powder Rep 63: 22-28, 31.

15. Dabhade VV, Tallapragada RR, Trivedi MK (2009) Effect of external energy on atomic, crystalline and powder characteristics of antimony and bismuth powders. Bull Mater Sci 32: 471-479.

16. Trivedi MK, Nayak G, Patil S, Tallapragada RM, Latiyal O (2015) Studies of the atomic and crystalline characteristics of ceramic oxide nano powders after bio field treatment. Ind Eng Manage 4: 161.

17. Sances F, Flora E, Patil S, Spence A, Shinde V (2013) Impact of biofield treatment on ginseng and organic blueberry yield. Agrivita J Agric Sci 35: 22-29.

18. Lenssen AW (2013) Biofield and fungicide seed treatment influences on soybean productivity, seed quality and weed community. Agricultural Journal 8: 138-143.

19. Trivedi MK, Patil S, Shettigar H, Gangwar M, Jana S (2015) An effect of biofield treatment on multidrug-resistant Burkholderia cepacia: A multihost pathogen. J Trop Dis 3: 167.

20. Trivedi MK, Patil S, Shettigar H, Gangwar M, Jana S (2015) Antimicrobial sensitivity pattern of Pseudomonas fluorescens after biofield treatment. J Infect Dis Ther 3: 222.

21. Williams JG, Kubelik AR, Livak KJ, Rafalski JA, Tingey SV (1990) DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res 18: 6531-6535.

22. Meunier JR, Grimont PA (1993) Factors affecting reproducibility of random amplified polymorphic DNA fingerprinting. Res Microbiol 144: 373-379.

23. Welsh J, McClelland M (1990) Fingerprinting genomes using PCR with arbitrary primers. Nucleic Acids Res 18: 7213-7218.

24. Fader RC, Weaver E, et al. (2013) Multilaboratory study of the biomic automated well-reading instrument versus MicroScan WalkAway for reading MicroScan antimicrobial susceptibility and identification panels. J Clin Microbiol 51: 1548-1554.

25. Ashayeri-Panah M, Eftekhar F, Ghamsari MM, Parvin M, Feizabadi MM (2013) Genetic profiling of Klebsiella pneumoniae: Comparison of pulsed field gel electrophoresis and random amplified polymorphic DNA. Braz J Microbiol 44: 823-828.

26. Hoffman AM, Viel L, Muckle CA, Yager JS, Staempfli HR (1992) Evaluation of sulbactam plus ampicillin for treatment of experimentally induced Klebsiella pneumoniae lung infection in foals. Am J Vet Res 53: 1059-1067.

27. Haeggman S, Lofdahl S, Burman LG (1997) An allelic variant of the chromosomal gene for class A beta-lactamase K2, specific for Klebsiella pneumoniae, is the ancestor of SHV-1. Antimicrob Agents Chemother 41: 2705-2709.

28. Jones RN (2001) In vitro evaluation of ertapenem (MK-0826), a long-acting carbapenem, tested against selected resistant strains. J Chemother 13: 363-376.

29. Kumar AR (2013) Antimicrobial sensitivity pattern of Klebsiella pneumonia isolated from pus from tertiary care hospital and issues related to the rational selection of antimicrobials. J Chem Pharm Res 5: 326-331.

30. Jones RN, Baquero F, Privitera G, Inoue M, Wiedemann B (1997) Inducible β-lactamase-mediated resistance to third-generation cephalosporins. Clin Microbiol Infect 3: s7-s20.

31. Hansen DS, Aucken HM, Abiola T, Podschun R (2004) Recommended test panel for differentiation of Klebsiella species on the basis of a trilateral interlaboratory evaluation of 18 biochemical tests. J Clin Microbiol 42: 3665-3669.

32. Eisen D, Russel EG, et al. (1995) Random amplified polymorphic DNA and plasmid analysis used in investigation of an outbreak of multiresistant Klebsiella pneumoniae. J Clin Microbiol 33: 713-717.

33. Williams JG, Hanafey MK, Rafalski JA, Tingey SV (1993) Genetic analysis using random amplified polymorphic DNA markers. Methods Enzymol 218: 704-740.

34. Orskov I, Orskov F (1984) Serotyping of Klebsiella. Methods in microbiology. NY: Academic Press, Inc. New York.

35. Barnes PM, Bloom B, Nahin RL (2008) Complementary and alternative medicine use among adults and children: United States, 2007. Natl Health Stat Report 10: 1-23.

36. Hintz KJ, Yount GL, et al. (2003) Bioenergy definitions and research guidelines. Altern Ther Health Med 9: A13-A30.

37. Lindstrom E, Mild KH, Lundgren E (1998) Analysis of the T cell activation signaling pathway during ELF magnetic field exposure, p56lck and [Ca2+]i-measurements. Bioeletrochem Bioenerg 46: 129-137.

Cite this work

Researchers should cite this work as follows:

  • Trivedi MK, Branton A, Trivedi D, Gangwar M, Jana S (2015) Antimicrobial Susceptibility, Biochemical Characterization and Molecular Typing of Biofield Treated Klebsiella pneumoniae. J Health Med Inform 6: 206. doi:10.4172/2157-7420.1000206
     

  • Mahendra Kumar Trivedi; Alice Branton; Dahryn Trivedi; Mayank Gangwar; Snehasis Jana (2019), "Antimicrobial Susceptibility, Biochemical Characterization and Molecular Typing of Biofield Treated Klebsiella pneumoniae," https://diagrid.org/resources/1429.

    BibTex | EndNote

Tags