Assessment of Antibiogram of Multidrug-Resistant Isolates of Enterobacter aerogenes after Biofield Energy Treatment

By Mahendra Kumar Trivedi1, Alice Branton1, Dahryn Trivedi1, Harish Shettigar1, Gopal Nayak1, Mayank Gangwar2, Snehasis Jana2

1. Trivedi Global Inc. 2. Trivedi Science Research Laboratory Pvt. Ltd.

Published on


Enterobacter aerogenes (E. aerogenes) has been reported as the versatile opportunistic pathogen associated with the hospital infections worldwide. The aim of the study was to determine the impact of Mr. Trivedi’s biofield energy treatment on multidrug resistant clinical lab isolates (LSs) of E. aerogenes. The MDR isolates of E. aerogenes (i.e., LS 45 and LS 54) were divided into two groups, i.e., control and treated. Samples were analyzed for antimicrobial susceptibility pattern, minimum inhibitory concentration (MIC), biochemical study, and biotype number using MicroScan Walk-Away® system, on day 10 after the biofield treatment. The antimicrobial sensitivity assay showed 14.28% alteration out of twenty eight tested antimicrobials with respect to the control. The cefotetan sensitivity changed from intermediate (I) to inducible β-lactamase (IB), while piperacillin/tazobactam changed from resistant to IB in the treated LS 45. Improved sensitivity was reported in tetracycline, i.e., from I to susceptible (S) in LS 45, while chloramphenicol and tetracycline sensitivity changed from R to I in treated LS 54. Four-fold decrease in MIC value was reported in piperacillin/tazobactam, and two-fold decrease in cefotetan and tetracycline in the biofield treated LS 45 as compared to the control. MIC results showed an overall decreased MIC values in 12.50% tested antimicrobials such as chloramphenicol (16 µg/mL) and tetracycline (8 µg/mL) in LS 54. The biochemical study showed an overall 45.45% negative reaction in the tested biochemical in both the treated isolates as compared to the control. A change in biotype number was reported in MDR isolates (LS 45 and LS 54), while in LS 54, altered biotype number, i.e., 0406 0374 as compared to the control (7770 4376), with identification of the new species as Stenotrophomonas maltophilia with brown color as special characteristic. The study findings suggest that Mr. Trivedi’s biofield energy treatment on clinical MDR isolates of E. aerogenes has the significant effect on altering the sensitivity of antimicrobials, decreasing the MIC values, changed biochemical reactions, and biotype number.


1. Davin-Regli A, Pages JM (2015) Enterobacter aerogenes and Enterobacter cloacae; versatile bacterial pathogens confronting antibiotic treatment. Front Microbiol 6: 392.

2. Davin-Regli A, Bolla JM, James CE, Lavigne JP, Chevalier J, et al. (2008) Membrane permeability and regulation of drug “influx and efflux” in enterobacterial pathogens. Curr Drug Targets 9: 750-759.

3. Jacoby GA (2009) AmpC beta-lactamases. Clin Microbiol Rev 22: 161-182, Table of Contents.

4. Nikaido H (2003) Molecular basis of bacterial outer membrane permeability revisited. Microbiol Mol Biol Rev 67: 593-656.

5. Pages JM, James CE, Winterhalter M (2008) The porin and the permeating antibiotic: A selective diffusion barrier in Gram-negative bacteria. Nat Rev Microbiol 6: 893-903.

6. Chang SC, Chen YC, Hsu LY (1990) [Epidemiologic study of pathogens causing nosocomial infections]. J Formos Med Assoc 89: 1023-1030, 1015.

7. Stein A, Raoult D (2002) Colistin: an antimicrobial for the 21st century? Clin Infect Dis 35: 901-902.

8. Markou N, Apostolakos H, Koumoudiou C, Athanasiou M, Koutsoukou A, et al. (2003) Intravenous colistin in the treatment of sepsis from multiresistant Gram-negative bacilli in critically ill patients. Crit Care 7: R78-83.

9. Biswas S, Brunel JM, Dubus JC, Reynaud-Gaubert M, Rolain JM (2012) Colistin: An update on the antibiotic of the 21st century. Expert Rev Anti Infect Ther 10: 917-934.

10. Lucchetti G, de Oliveira RF, Gonçalves JP, Ueda SM, Mimica LM, et al. (2013) Effect of Spiritist “passe” (Spiritual healing) on growth of bacterial cultures. Complement Ther Med 21: 627-632.

11. Movaffaghi Z, Farsi M (2009) Biofield therapies: biophysical basis and biological regulations? Complement Ther Clin Pract 15: 35-37.

12. Trivedi MK, Patil S, Shettigar H, Gangwar M, Jana S (2015) Antimicrobial sensitivity pattern of Pseudomonas fluorescens after biofield treatment. J Infect Dis Ther 3: 222.

13. Trivedi MK, Patil S, Shettigar H, Bairwa K, Jana S (2015) Phenotypic and biotypic characterization of Klebsiella oxytoca: An impact of biofield treatment. J Microb Biochem Technol 7: 203-206.

14. Trivedi MK, Patil S, Shettigar H, Bairwa K, Jana S (2015) Effect of biofield treatment on phenotypic and genotypic characteristic of Provindencia rettgeri. Mol Biol 4: 129.

15. Trivedi MK, Nayak G, Patil S, Tallapragada RM, Latiyal O (2015) Studies of the atomic and crystalline characteristics of ceramic oxide nano powders after bio field treatment. Ind Eng Manage 4: 161.

16. Trivedi MK, Patil S, Tallapragada RM (2013) Effect of biofield treatment on the physical and thermal characteristics of silicon, tin and lead powders. J Material Sci Eng 2: 125.

17. Trivedi MK, Patil S, Tallapragada RM (2013) Effect of biofield treatment on the physical and thermal characteristics of vanadium pentoxide powder. J Material Sci Eng S11: 001.

18. Trivedi MK, Patil S, Tallapragada RM (2015) Effect of biofield treatment on the physical and thermal characteristics of aluminium powders. Ind Eng Manage 4: 151.

19. Patil SA, Nayak GB, Barve SS, Tembe RP, Khan RR (2012) Impact of biofield treatment on growth and anatomical characteristics of Pogostemon cablin (Benth.). Biotechnology 11: 154-162.

20. Nayak G, Altekar N (2015) Effect of biofield treatment on plant growth and adaptation. J Environ Health Sci 1: 1-9.

21. Shinde V, Sances F, Patil S, Spence A (2012) Impact of biofield treatment on growth and yield of lettuce and tomato. Aust J Basic Appl Sci 6: 100-105.

22. Sances F, Flora E, Patil S, Spence A, Shinde V (2013) Impact of biofield treatment on ginseng and organic blueberry yield. Agrivita J Agric Sci 35: 22-29.

23. Lenssen AW (2013) Biofield and fungicide seed treatment influences on soybean productivity, seed quality and weed community. Agricultural Journal 8: 138-143.

24. Fader RC, Weaver E, Fossett R, Toyras M, Vanderlaan J, et al. (2013) Multilaboratory study of the biomic automated well-reading instrument versus MicroScan WalkAway for reading MicroScan antimicrobial susceptibility and identification panels. J Clin Microbiol 51: 1548-1554.

25. Clarke TC, Black LI, Stussman BJ, Barnes PM, Nahin RL (2015) Trends in the use of complementary health approaches among adults: Unites States, 2002-2012. National health statistics reports; no 79. Hyattsville, MD: National Center for Health Statistics.

26. Miró E, Alonso C, Navarro F, Mirelis B, Prats G (1995) [Resistencia alimipenemen Enterobacter aerogenes]. Enferm Infecc Microbiol Clin 13: 278-282.

27. Ghisalberti D, Masi M, Pagès JM, Chevalier J (2005) Chloramphenicol and expression of multidrug efflux pump in Enterobacter aerogenes. Biochem Biophys Res Commun 328: 1113-1118.

28. Mallea M, Chevalier J, Bornet CE, Eyraud A, Davin-Regli A, et al. (1998) Porin alteration and active efflux: Two in vivo drug resistance strategies used by Enterobacter aerogenes. Microbiology 144: 3003-3009.

29. Chow JW, Fine MJ, Shlaes DM, Quinn JP, Hooper DC, et al. (1991) Enterobacter bacteremia: Clinical features and emergence of antibiotic resistance during therapy. Ann Intern Med 115: 585-590.

30. Segreti J, Levin S (1996) Bacteriologic and clinical applications of a new extended-spectrum parenteral cephalosporin. Am J Med 100: 45S-51S.

31. Norrby SR (1995) Carbapenems. Med Clin North Am 79: 745-759.

32. Jones RN (2001) Resistance patterns among nosocomial pathogens: Trends over the past few years. Chest 119: 397S-404S.

33. Zabransky RJ, Hall JW, Day FE, Needham GM (1969) Klebsiella, Enterobacter, and Serratia: Biochemical differentiation and susceptibility to ampicillin and three cephalosporin derivatives. Appl Microbiol 18: 198-203.

34. MacFaddin JF (1980) Biochemical tests for identification of medical bacteria. (2nd edn), Williams and Wilkins, Baltimore.

35. Schramm VL (2011) Chemical mechanisms in biochemical reactions. J Am Chem Soc 133: 13207-13212.

36. Denton M, Kerr KG (1998) Microbiological and clinical aspects of infection associated with Stenotrophomonas maltophilia. Clin Microbiol Rev 11: 57-80.

37. Warber SL, Gordon A, Gillespie BW, Olson M, Assefi N (2003) Standards for conducting clinical biofield energy healing research. Altern Ther Health Med 9: A54-A64.

Cite this work

Researchers should cite this work as follows:

  • Trivedi MK, Branton A, Trivedi D, Shettigar H, Nayak G, et al. (2015) Assessment of Antibiogram of Multidrug-Resistant Isolates of Enterobacter aerogenes after Biofield Energy Treatment. J Pharma Care Health Sys 2: 145. doi:10.4172/2376-0419.1000145

  • Mahendra Kumar Trivedi; Alice Branton; Dahryn Trivedi; Harish Shettigar; Gopal Nayak; Mayank Gangwar; Snehasis Jana (2019), "Assessment of Antibiogram of Multidrug-Resistant Isolates of Enterobacter aerogenes after Biofield Energy Treatment,"

    BibTex | EndNote