Characterization of Physical, Thermal and Spectral Properties of Biofield Treated O-Aminophenol

By Snehasis Jana1, Mahendra Kumar Trivedi1, Rama Mohan Tallapragada1, Alice Branton1, Dahryn Trivedi1, Gopal Nayak1, Rakesh Kumar Mishra2

1. Trivedi Global Inc. 2. Trivedi Science Research Laboratory Pvt. Ltd.

Published on

Abstract

O-aminophenol has extensive uses as a conducting material and in electrochemical devices. The objective of this research was to investigate the influence of biofield energy treatment on the physical thermal and spectral properties of o-aminophenol. The study was performed in two groups; the control group was remained as untreated, while the treated group was subjected to Mr. Trivedi’s biofield energy treatment. Subsequently, the control and treated o-aminophenol samples were characterized by X-ray diffraction (XRD), Differential scanning calorimetry (DSC), Thermogravimetric analysis (TGA), surface area analysis, Fourier transform infrared (FT-IR) spectroscopy, and Ultra violet-visible spectroscopy analysis (UV-vis). The XRD analysis showed an increase in peak intensity of the treated o-aminophenol with respect to the control. Additionally, the crystallite size of the treated o-aminophenol was increased by 34.51% with respect to the control sample. DSC analysis showed a slight increase in the melting temperature of the treated sample as compared to the control. However, a significant increase in the latent heat of fusion was observed in the treated o-aminophenol by 162.24% with respect to the control. TGA analysis showed an increase in the maximum thermal decomposition temperature (Tmax) in treated o-aminophenol (178.17ºC) with respect to the control (175ºC). It may be inferred that the thermal stability of o-aminophenol increased after the biofield treatment. The surface area analysis using BET showed a substantial decrease in the surface area of the treated sample by 47.1% as compared to the control. The FT-IR analysis showed no changes in the absorption peaks of the treated sample with respect to the control. UV-visible analysis showed alteration in the absorption peaks i.e. 211→203 nm and 271→244 nm of the treated o-aminophenol as compared to the control. Overall, the results showed that the biofield treatment caused an alteration in the physical, thermal and spectral properties of the treated o-aminophenol.

References

1. Nabid MR, Entezami AA (2003) Enzymatic synthesis and characterization of a water-soluble, conducting poly (o-toluidine). Eur Polym J 39: 1169-1175.

2. Yang H, Bard AJ (1992) The application of fast scan cyclic voltammetry. Mechanistic study of the initial stage of electropolymerization of aniline in aqueous solutions. J Electroanal Chem 339: 423-449.

3. Yamada K, Teshima K, Kobayashi N, Hirohashi R (1995) Electropolymerization of aniline derivatives in non-aqueous solution without a proton donor. J Electroanal Chem 394: 71-79.

4. Chiang JC, MacDiarmid AG (1986) ‘Polyaniline’: Protonic acid doping of the emeraldine form to the metallic regime. Synt Met 13: 193-205.

5. Gattrell M, Kirk DW (1992) A Fourier transform infrared spectroscopy study of the passive film produced during aqueous acidic phenol electro-oxidation. J Electrochem Soc 139: 2736-2744.

6. Lapuente R, Cases F, Garces P, Morallon E Vazquez JL (1998) A voltammetric and FT-IR–ATR study of the electropolymerization of phenol on platinum electrodes in carbonate medium: Influence of sulfide. J Electroanal Chem 451: 163-171.

7. Yin H, Ma Q, Zhou Y, Ai S, Zhu L (2010) Electrochemical behavior and voltammetric determination of 4-aminophenol based on graphene-chitosan composite film modified glassy carbon electrode. Electrochim Acta 55: 7102-7108.

8. Mascaro LH, Berton AN, Micaron L (2011) Electrochemical synthesis of polyaniline/poly-o-aminophenol copolymers in chloride medium. Int J of Electrochem 2011: Article ID 292581.

9. Tucceri R (2013) Poly (o-aminophenol) Film electrodes: Synthesis, transport properties and practical applications. Springer science and business media.

10. Li Y, Qian R (1993) Stability of conducting polymers from the electrochemical point of view. Synt Met 53: 149-154.

11. Wang Y, Rubner MF, Buckley LJ (1991) Stability studies of electrically conducting polyheterocycles. Synt Met 41: 1103-1108.

12. Trivedi MK, Patil S, Tallapragada RM (2013) Effect of biofield treatment on the physical and thermal characteristics of silicon, tin and lead powders. J Material Sci Eng 2: 125.

13. Trivedi MK, Patil S, Tallapragada RMR (2015) Effect of biofield treatment on the physical and thermal characteristics of aluminium powders. Ind Eng Manag 4: 151.

14. Trivedi MK, Patil S, Tallapragada RM (2013) Effect of biofield treatment on the physical and thermal characteristics of vanadium pentoxide powder. J Material Sci Eng S11: 001.

15. Trivedi MK, Nayak G, Patil S, Tallapragada RM, Jana S, et al. (2015) Bio-field treatment: An effective strategy to improve the quality of beef extract and meat infusion powder. J Nutr Food Sci 5: 389.

16. Barnes PM, Powell-Griner E, McFann K, Nahin RL (2004) Complementary and alternative medicine use among adults: United States, 2002. Adv Data: 1-19.

17. Movaffaghi Z, Farsi M (2009) Biofield therapies: biophysical basis and biological regulations? Complement Ther Clin Pract 15: 35-37.

18. Neuman MR (2000) Biopotential electrodes. The biomedical engg handbook: (2ndedition), Boca Raton: CRC Press LLC.

19. Shinde V, Sances F, Patil S, Spence A (2012) Impact of biofield treatment on growth and yield of lettuce and tomato. Aust J Basic Appl Sci 6: 100-105.

20. Sances F, Flora E, Patil S, Spence A, Shinde V (2013) Impact of biofield treatment on ginseng and organic blueberry yield. Agrivita J Agric Sci 35: 22-29.

21. Patil SA, Nayak GB, Barve SS, Tembe RP, Khan RR (2012) Impact of biofield treatment on growth and anatomical characteristics of Pogostemon cablin (Benth.). Biotechnology 11: 154-162.

22. Trivedi MK, Patil S, Shettigar H, Bairwa K, Jana S (2015) Phenotypic and biotypic characterization of Klebsiella oxytoca: An impact of biofield treatment. J Microb Biochem Technol 7: 203-206.

23. Trivedi MK, Patil S, Shettigar H, Gangwar M, Jana S (2015) An effect of biofield treatment on Multidrug-resistant Burkholderia cepacia: A multihost pathogen. J Trop Dis 3: 167.

24. Nayak G, Altekar N (2015) Effect of biofield treatment on plant growth and adaptation. J Environ Health Sci 1: 1-9.

25. Trivedi MK, Patil S, Shettigar H, Bairwa K, Jana S (2015) Effect of biofield treatment on spectral properties of paracetamol and piroxicam. Chem Sci J 6: 98.

26. Pavia DL, Lampman GM, Kriz GS (2001) Introduction to spectroscopy. (3rd edition), Thomson Learning, Singapore.

27. Gaber A, Abdel-Rahim MA, Abdel-Latief AY, Abdel-Salam MN (2014) Influence of calcination temperature on the structure and porosity of nanocrystalline SnO2 synthesized by a conventional precipitation method. Int J Electrochem Sci 9: 81-95.

28. Raj KJA, Viswanathan B (2009) Effect of surface area, pore volume, particle size of P25 titania on the phase transformation of anatase to rutile. Indian J Chem 48A: 1378-1382.

29. Cinarli A, Gurbuz D, Tavman A, Birteksoz AS (2011) Synthesis, spectral characterizations and antimicrobial activity of some schiff bases of 4-chloro-2-aminophenol. Bull Chem Soc Ethiop 25: 407-417.

30. Johns IB, McElhill EA, Smith JO (1962) Thermal stability of organic compounds. Ind Eng Chem Prod Res Dev 1: 2-6.

31. Thenmozhi G, JayaKumar D, Gopalswamy M, Jaya Santhi R (2011) Synthesis, characterisation and biological applications of conducting poly (p- amino phenol) and its nano compound. Der Pharma Chemica 3: 116-126.

Cite this work

Researchers should cite this work as follows:

  • Trivedi MK, Tallapragada RM, Branton A, Trivedi D, Nayak G, et al.(2015) Characterization of Physical, Thermal and Spectral Properties of Biofield Treated O-Aminophenol. Pharm Anal Acta 6: 425. doi:10.4172/21532435.1000425
     

  • Snehasis Jana; Mahendra Kumar Trivedi; Rama Mohan Tallapragada; Alice Branton; Dahryn Trivedi; Gopal Nayak; Rakesh Kumar Mishra (2019), "Characterization of Physical, Thermal and Spectral Properties of Biofield Treated O-Aminophenol," https://diagrid.org/resources/1501.

    BibTex | EndNote

Tags