Characterization of Antimicrobial Susceptibility Profile of Biofield Treated Multidrug-resistant Klebsiella oxytoca

By Mahendra Kumar Trivedi1, Alice Branton1, Dahryn Trivedi1, Gopal Nayak1, Harish Shettigar1, Mayank Gangwar2, Snehasis Jana2

1. Trivedi Global Inc. 2. Trivedi Science Research Laboratory Pvt. Ltd.

Published on


Klebsiella are opportunistic pathogens that cause a wide spectrum of severe diseases. The aim of the present study was to investigate the impact of biofield treatment on multidrug resistant strain of K. oxytoca with respect to antibiogram pattern along with biochemical study and biotype number. Clinical lab isolate of K. oxytoca was divided into two groups i.e. control and treated. Control group remain untreated and treated group was subjected to Mr. Trivedi’s biofield. The analysis was done on day 10 after biofield treatment and compared with control group. Control and treated groups were analyzed for antimicrobial susceptibility pattern, minimum inhibitory concentration (MIC), biochemical reactions and biotype number using MicroScan Walk-Away® automated system. Experimental results showed the impact of biofield treatment on K. oxytoca and found alteration in both antimicrobial sensitivity and MIC values as compared with untreated group. Antimicrobial sensitivity of about 26.67% tested antimicrobials out of thirty was altered with respect to control. MIC results showed about 12.50% alterations in tested antimicrobials as compared to control. Biochemical study showed 24.24% alteration in tested biochemical reactions after biofield treatment. A significant change in biotype number (7713 5272) was identified after biofield treatment as compared to control (7775 4332). In treated group, a new species was identified as Kluyvera ascorbata, as compared to control, K. oxytoca. Study findings suggest that biofield treatment has a significant effect in altering the antimicrobial sensitivity, MIC values, biochemical reactions and biotype number of multidrug resistant strain of K. oxytoca. Biofield treatment could be applied to alter the antibiogram-resistogram pattern of antimicrobials.


1. Gorkiewicz G (2009) Nosocomial and antibiotic-associated diarrhea caused by organisms other than Clostridium difficile Int J Antimicrob Agents 33: S37-S41

2. Podschun R, Ullmann U (1998) Klebsiella spp as nosocomial pathogens: Epidemiology, taxonomy, typing methods, and pathogenicity factors Clin Microbiol Rev 11: 589-603

3. Savino F, Cordisco L, Tarasco V, Calabrese R, Palumeri E, et al. (2009) Molecular identification of coliform bacteria from colicky breastfed infants Acta Paediatr 98: 1582-1588

4. Lin RD, Hsueh PR, Chang SC, Chen YC, Hsieh WC, et al. (1997) Bacteremia due to Klebsiella oxytoca: Clinical features of patients and antimicrobial susceptibilities of the isolates Clin Infect Dis 24: 1217-1222

5. Menard A, Harambat J, Pereyre S, Pontailler JR, Megraud F, et al. (2010) First report of septic arthritis caused by Klebsiella oxytoca J Clin Microbiol 48: 3021-3023

6. Zarate MS, Gales AC, Picao RC, Pujol GS, Lanza A, et al. (2008) Outbreak of OXY-2-producing Klebsiella oxytoca in a renal transplant unit J Clin Microbiol 46: 2099-2101

7. Sorli L, Miro E, Segura C, Navarro F, Grau S, et al. (2011) Intra- and interspecies spread of carbapenemase genes in a non-hospitalized patient Eur J Clin Microbiol Infect Dis 30: 1551-1555

8. Benor DJ (2002) Energy medicine for the internist Med Clin North Am 86: 105-125

9. Jonas WB, Crawford CC (2003) Science and spiritual healing: a critical review of spiritual healing, “energy” medicine, and intentionality Altern Ther Health Med 9: 56-61

10. Einstein A (1905) Does the inertia of a body depend upon its energy-content? Ann Phys 18: 639-641

11. Trivedi MK, Tallapragada RM (2008) A transcendental to changing metal powder characteristics Met Powder Rep 63: 22-28, 31

12. Dhabade VV, Tallapragada RM, Trivedi MK (2009) Effect of external energy on atomic, crystalline and powder characteristics of antimony and bismuth powders Bull Mater Sci 32: 471-479

13. Trivedi MK, Patil S, Tallapragada RM (2013) Effect of biofield treatment on the physical and thermal characteristics of silicon, tin and lead powders J Material Sci Eng 2: 125

14. Trivedi MK, Nayak G, Patil S, Tallapragada RM, Latiyal O (2015) Studies of the atomic and crystalline characteristics of ceramic oxide nano powders after bio field treatment Ind Eng Manage 4: 161

15. Trivedi MK, Patil S, Shettigar H, Bairwa K, Jana S (2015) Phenotypic and biotypic characterization of Klebsiella oxytoca: An impact of biofield treatment J Microb Biochem Technol 7: 203-206

16. Trivedi MK, Patil S, Shettigar H, Gangwar M, (2015) An effect of biofield treatment on multidrug-resistant Burkholderia cepacia: A multihost pathogen J Trop Dis 3: 167

17. Trivedi MK, Patil S, Shettigar H, Gangwar M, Jana S (2015) Antimicrobial sensitivity pattern of Pseudomonas fluorescens after biofield treatment J Infect Dis Ther 3: 222

18. Shinde V, Sances F, Patil S, Spence A (2012) Impact of biofield treatment on growth and yield of lettuce and tomato Aust J Basic Appl Sci 6: 100-105

19. Sances F, Flora E, Patil S, Spence A, Shinde V (2013) Impact of biofield treatment on ginseng and organic blueberry yield Agrivita J Agric Sci 35: 22-29

20. Lenssen AW (2013) Biofield and fungicide seed treatment influences on soybean productivity, seed quality and weed community Agricultural Journal 8: 138-143

21. Nayak G, Altekar N (2015) Effect of biofield treatment on plant growth and adaptation J Environ Health Sci 1: 1-9

22. Fader RC, Weaver E, Fossett R, Toyras M, Vanderlaan J, et al. (2013) Multilaboratory study of the biomic automated well-reading instrument versus MicroScan WalkAway for reading MicroScan antimicrobial susceptibility and identification panels J Clin Microbiol 51: 1548-1554

23. Upadhyay AK, Parajuli P (2013) Extended spectrum β-lactamase producing multidrug-resistant Klebsiella species isolated at national medical college and teaching hospital, Nepal Asian J Pharm Clin Res 6: 161-164

24. Arakawa Y, Ohta M, Kido N, Mori M, Ito H, et al. (1989) Chromosomal β-lactamase of Klebsiella oxytoca, a new class A enzyme that hydrolyses broad-spectrum β-lactam antibiotics Antimicrob Agents Chemother 33: 63-70

25. Tenover FC (2006) Mechanisms of antimicrobial resistance in bacteria Am J Infect Control 119: S3-S10

26. He X, Li S, Kaminskyj SG (2013) Using Aspergillus nidulans to identify antifungal drug resistance mutations Eukaryot Cell 13: 288-294

27. Alekshun MN, Levy SB (2007) Molecular mechanisms of antibacterial multidrug resistance Cell 128: 1037-1050

28. Turner JG, Clark AJ, Gauthier DK, Williams M (1998) The effect of therapeutic touch on pain and anxiety in burn patients J Adv Nurs 28: 10-20

29. Okeke IN, Laxminarayan R, Bhutta ZA, Duse AG, Jenkins P, et al. (2005) Antimicrobial resistance in developing countries Part I: Recent trends and current status Lancet Infect Dis 5: 481-493

30. Koithan M (2009) Introducing complementary and alternative therapies J Nurse Pract 5: 18-20

31. Lindstrom E, Mild KH, Lundgren E (1998) Analysis of the T cell activation signaling pathway during ELF magnetic field exposure, p56lck and [Ca2+]i-measurements Bioeletrochem Bioenerg 46: 129-137.

Cite this work

Researchers should cite this work as follows:

  • Trivedi MK, Branton A, Trivedi D, Nayak G, Shettigar H, et al. (2016) Characterization of Antimicrobial Susceptibility Profile of Biofield Treated Multidrug-resistant Klebsiella oxytoca . Appli Micro Open Access 1: 1000101. doi:10.4172/2471-9315.1000101

  • Mahendra Kumar Trivedi; Alice Branton; Dahryn Trivedi; Gopal Nayak; Harish Shettigar; Mayank Gangwar; Snehasis Jana (2019), "Characterization of Antimicrobial Susceptibility Profile of Biofield Treated Multidrug-resistant Klebsiella oxytoca,"

    BibTex | EndNote