Antimicrobial Susceptibility Pattern and Biochemical Characteristics of Staphylococcus aureus: Impact of Bio field Treatment

By Mahendra Kumar Trivedi1, Shrikant Patil1, Harish Shettigar1, Sambhu Charan Mondal2, Snehasis Jana2

1. Trivedi Global Inc. 2. Trivedi Science Research Laboratory Pvt. Ltd.

Published on

Abstract

Study background: Staphylococci are widespread in nature, mainly found on the skin and mucous membranes. Staphylococcus aureus (S. aureus) is the key organism for food poisoning due to massive production of heat stable exotoxins. The current study was attempted to investigate the effect of biofield treatment on antimicrobial susceptibility pattern and biochemical characteristics of S. aureus (ATCC 25923).

Methods: S. aureus cells were procured from MicroBioLogics in sealed packs bearing the American Type Culture Collection (ATCC 25923) number and stored according to the recommended storage protocols until needed for experiments. Revived and lyophilized state of ATCC strains of S. aureus were selected for the study. Both revived (Group; Gr. II) and lyophilized (Gr. III) strain of S. aureus were subjected to Mr. Trivedi’s biofield treatment. Revived treated cells were assessed on day 5 and day 10 while lyophilized treated cells on day 10 only. After biofield treatment both treated cells were analysed for its antimicrobial sensitivity, minimum inhibitory concentration value, biochemical reactions and biotype number with respect to control (Gr. I).

Results: The antimicrobial susceptibility and minimum inhibitory concentration of S. aureus showed significant (86.67%) alteration in lyophilized cells while no alteration was found in revived treated cells as compared to control. It was observed that overall 37.93% (eleven out of twenty nine) biochemical reactions were altered in the treated groups with respect to control. Moreover, biotype numbers were substantially changed in revived treated cells, Gr. II (303137, Staphylococcus capitis subsp. ureolyticus) on day 5 and in lyophilized treated cells, Gr. III (767177, S. cohnii subsp. urealyticum) on day 10 as compared to control (307016, S. aureus).

Conclusion: The result suggested that biofield treatment has significant impact on S. aureus in lyophilized treated cells with respect to antimicrobial susceptibility, MIC values and biochemical reactions pattern. Apart from these, biotype numbers with new species were observed in revived treated group on day 5 as Staphylococcus capitis subsp. ureolyticus and in lyophilized cells as Staphylococcus cohnii subsp. urealyticum with respect to control, i.e., S. aureus.

References

1. Konuku S, Rajan MM, Muruhan S (2012) Morphological and biochemical characteristics and antibiotic resistance pattern of Staphylococcus aureus isolated from grapes. Int J Nut Pharmacol Neurol Dis 2: 70-73.

2. Balaban N, Rasooly A (2000) Staphylococcal enterotoxins. Int J Food Microbiol 61: 1-10.

3. Scherrer D, Corti S, Muehlherr JE, Zweifel C, Stephan R (2004) Phenotypic and genotypic characteristics of Staphylococcus aureus isolates from raw bulk-tank milk samples of goats and sheep. Vet Microbiol 101: 101-107.

4. Schlegelová J, Nápravníková E, Dendis M, Horváth R, Benedík J, et al. (2004) Beef carcass contamination in a slaughterhouse and prevalence of resistance to antimicrobial drugs in isolates of selected microbial species. Meat Sci 66: 557-565.

5. Chakraborty SP, Mahapatra SK, Roy S (2011) Biochemical characters and antibiotic susceptibility of Staphylococcus aureus isolates. Asian Pac J Trop Biomed 1: 212-216.

6. Burr HS (1957) Bibliography of Harold Saxton Burr. Yale J Biol Med 30: 163-167.

7. Hammerschlag R, Jain S, Baldwin AL, Gronowicz G, Lutgendorf SK, et al. (2012) Biofield research: A roundtable discussion of scientific and methodological issues. J Altern Complement Med 18: 1081-1086.

8. Movaffaghi Z, Farsi M (2009) Biofield therapies: Biophysical basis and biological regulations? Complement Ther Clin Pract 15: 35-37.

9. Rivera-Ruiz M, Cajavilca C, Varon J (2008) Einthoven's string galvanometer: The first electrocardiograph. Tex Heart Inst J 35: 174-178.

10. Trivedi MK, Tallapragada RM (2008) A transcendental to changing metal powder characteristics. Met Powder Rep 63: 22-28,31.

11. Dabhade VV, Tallapragada RR, Trivedi MK (2009) Effect of external energy on atomic, crystalline and powder characteristics of antimony and bismuth powders. Bull Mater Sci 32: 471-479.

12. Trivedi MK, Tallapragada RM (2009) Effect of super consciousness external energy on atomic, crystalline and powder characteristics of carbon allotrope powders. Mater Res Innov 13: 473-480.

13. Sances F, Flora E, Patil S, Spence A, Shinde V (2013) Impact of biofield treatment on ginseng and organic b1lueberry yield. AGRIVITA J Agric Sci 35: 22-29.

14. Lenssen AW (2013) Biofield and fungicide seed treatment influences on soybean productivity, seed quality and weed community. Agricultural Journal 83: 138-143.

15. Trivedi M, Patil S (2008) Impact of an external energy on Staphylococcus epidermis [ATCC –13518] in relation to antibiotic susceptibility and biochemical reactions - An experimental study. J Accord Integr Med 4: 230-235.

16. Trivedi M, S Patil (2008) Impact of an external energy on Yersinia enterocolitica [ATCC –23715] in relation to antibiotic susceptibility and biochemical reactions: An experimental study. Internet J Alternat Med 6: 2.

17. Trivedi M, Bhardwaj Y, Patil S, Shettigar H, Bulbule A (2009) Impact of an external energy on Enterococcus faecalis [ATCC – 51299] in relation to antibiotic susceptibility and biochemical reactions – An experimental study. J Accord Integr Med 5: 119-130.

18. Patil SA, Nayak GB, Barve SS, Tembe RP, Khan RR (2012) Impact of biofield treatment on growth and anatomical characteristics of Pogostemon cablin (Benth). Biotechnology 11: 154-162.

19. Altekar N, Nayak G (2015) Effect of biofield treatment on plant growth and adaptation. J Environ Health Sci 1: 1-9.

20. Fader RC, Weaver E, Fossett R, Toyras M, Vanderlaan J, et al. (2013) Multilaboratory study of the biomic automated well-reading instrument versus MicroScan WalkAway for reading MicroScan antimicrobial susceptibility and identification panels. J Clin Microbiol 51: 1548-1554.

21. Pereira EM, Schuenck RP, Malvar KL, Iorio NL, Matos PD, et al. (2010) Staphylococcus aureus, Staphylococcus epidermidis and Staphylococcus haemolyticus: Methicillin-resistant isolates are detected directly in blood cultures by multiplex PCR. Microbiol Res 165: 243-249.

22. Toribio-Jimenez J, Moral BM, Echeverria SE, Pineda CO, Rodriguez-Barrera MA, et al. (2014) Biotype, antibiotype, genotype and toxin gene test-1 in Staphylococcus aureus isolated from cotija cheese in the state of Guerrero, Mexico. Afr J Microbiol Res 8: 2893-2897.

23. Milazzo I, Blandino G, Caccamo F, Musumeci R, Nicoletti G, et al. (2003) Faropenem, a new oral penem: Antibacterial activity against selected anaerobic and fastidious periodontal isolates. J Antimicrob Chemother 51: 721-725.

24. Ishii Y, Alba J, Maehara C, Murakami H, Matsumoto T, et al. (2006) Identification of biochemically atypical Staphylococcus aureus clinical isolates with three automated identification systems. J Med Microbiol 55: 387-392.

25. Lindstrom E, Hansson M, Lundgren E (1998) Analysis of the T cell activation signalling pathway during ELF magnetic field exposure, p56lck and [Ca2+] i-measurements. Bioeletrochem Bioenerg 46: 129-137.

Cite this work

Researchers should cite this work as follows:

  • Trivedi MK, Patil S, Shettigar H, Mondal SC, Jana S (2015) Antimicrobial Susceptibility Pattern and Biochemical Characteristics of Staphylococcus aureus: Impact of Bio field Treatment. J Microb Biochem Technol 7: 238-241. doi:10.4172/1948-5948.1000215
     

  • Mahendra Kumar Trivedi; Shrikant Patil; Harish Shettigar; Sambhu Charan Mondal; Snehasis Jana (2019), "Antimicrobial Susceptibility Pattern and Biochemical Characteristics of Staphylococcus aureus: Impact of Bio field Treatment," https://diagrid.org/resources/1731.

    BibTex | EndNote

Tags