Biofield Treatment: An Effective Strategy for Modulating the Physical and Thermal Properties of O-Nitrophenol, M-Nitrophenol and P-Tertiary Butyl Phenol

By Mahendra Kumar Trivedi1, Rama Mohan Tallapragada1, Alice Branton1, Dahryn Trivedi1, Gopal Nayak1, Rakesh Kumar Mishra2, Snehasis Jana2

1. Trivedi Global Inc. 2. Trivedi Science Research Laboratory Pvt. Ltd.

Published on

Abstract

Phenolic compounds are commonly used for diverse applications such as in pharmaceuticals, chemicals, rubber, dyes and pigments. The objective of present research was to study the impact of Mr. Trivedi’s biofield treatment on physical and thermal properties of phenol derivatives such as o-nitrophenol (ONP), m-nitrophenol (MNP) and p-tertiary butyl phenol (TBP). The study was performed in two groups (control and treated). The control and treated compounds were characterized using X-ray diffraction (XRD), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and surface area analysis. XRD analysis showed increase in crystallite size by 16.05% in treated ONP as compared to control. However, the treated MNP showed decrease in crystallite size by 16.17% as compared to control. The treated TBP showed increase in crystallite size by 5.20% as compared to control. DSC of treated MNP exhibited increase in melting temperature with respect to control, which may be correlated to higher thermal stability of treated sample. However, the treated TBP exhibited no significant change in melting temperature with respect to control. TGA analysis of treated ONP and TBP showed an increase in maximum thermal decomposition temperature (Tmax) as compared to control. However, the treated MNP showed slight decrease in Tmax in comparison with control sample. Surface area analysis of treated ONP showed decrease in surface area by 65.5%. However, surface area was increased by 40.7% in treated MNP as compared to control. These results suggest that biofield treatment has significant effect on physical and thermal properties of ONP, MNP and TBP.

References

1. Ju KS, Parales RE (2010) Nitroaromatic compounds, from synthesis to biodegradation. Microbiol Mol Biol Rev 74: 250-272.

2. Liao Q, Sun J, Gao L (2008) The adsorption of resorcinol from water using multi-walled carbon nanotubes. Colloids Surf A 312: 160-165.

3. Wang LN, Wang XQ, Zhang GH, Liu XT, Sun ZH, et al. (2011) Single crystal growth, crystal structure and characterization of a novel crystal: L-arginine 4-nitrophenolate 4-nitrophenol dehydrate (LAPP). J Cryst Growth 327: 133-139.

4. Chen T, Sun Z, Li L, Wang S, Wang Y, et al. (2012) Growth and characterization of a nonlinear optical crystal-2,6-diaminopyridinium4-nitrophenolate4-nitrophenol (DAPNP). J Cryst Growth 338: 157-161.

5. Muthuraman M, Beucher MB, Masse R, Nicoud JF, Desiraju GR (1999) Sodium 4-nitrophenolate 4-nitrophenol dihydrate crystal: a new herringbone structure for quadratic nonlinear optics. J Mater Chem 9: 1471-1479.

6. Hamidouche S, Bouras O, Zermane F, Cheknane B, Houari M, et al. (2015) Simultaneous sorption of 4-nitrophenol and 2-nitrophenol on a hybrid geocomposite based on surfactant-modified pillared-clay and activated carbon. Chem Eng J 279: 964-972.

7. Trivedi MK, Patil S, Tallapragada RM (2013) Effect of biofield treatment on the physical and thermal characteristics of vanadium pentoxide powders. J Mater Sci Eng S11: 001.

8. Trivedi MK, Patil S, Tallapragada RM (2013) Effect of biofield treatment on the physical and thermal characteristics of silicon, tin and lead powders. J Mater Sci Eng 2: 125.

9. Trivedi MK, Patil S, Tallapragada RM (2014) Atomic, crystalline and powder characteristics of treated zirconia and silica powders. J Mater Sci Eng 3: 144.

10. Trivedi MK, Patil S, Tallapragada RMR (2015) Effect of biofield treatment on the physical and thermal characteristics of aluminium powders. Ind Eng Manag 4: 151.

11. Del Giudice E, Doglia S, Milani M (1989) Magnetic flux quantization and josephson behavior in living systems. Phys Scrip 40: 786-791.

12. Nobili R (1985) Schrödinger wave holography in brain cortex. See comment in PubMed Commons below Phys Rev A 32: 3618-3626.

13. Popp FA (1989) Electromagnetic Bio-Information. Munchen, Baltimore: Urban & Schwarzenberg.

14. Smith CW (1998) Is a living system a macroscopic quantum system? Frontier Perspect 7: 9-15.

15. Feynman RP (1949) Space-time approaches to quantum electrodynamics. Phys Rev 76: 769-782.

16. Popp FA, Chang JJ, Herzog A, Yan Z, Yan Y (2002) Evidence of non-classical (squeezed) light in biological systems. Phys Lett 293: 98-102.

17. Popp FA, Quao G, Ke-Hsuen L (1994) Biophoton emission: experimental background and theoretical approaches. Mod Phys Lett B 8: 21-22.

18. Shinde V, Sances F, Patil S, Spence A (2012) Impact of biofield treatment on growth and yield of lettuce and tomato. Aust J Basic Appl Sci 6: 100-105.

19. Sances F, Flora E, Patil S, Spence A, Shinde V (2013) Impact of biofield treatment on ginseng and organic blueberry yield. Agrivita J Agric Sci 35: 22-29.

20. Lenssen AW (2013) Biofield and fungicide seed treatment influences on soybean productivity, seed quality and weed community. Agricultural Journal 8: 138-143.

21. Patil SA, Nayak GB, Barve SS, Tembe RP, Khan RR (2012) Impact of biofield treatment on growth and anatomical characteristics of Pogostemon cablin (Benth.). Biotechnology 11: 154-162.

22. Trivedi MK, Patil S (2008) Impact of an external energy on Staphylococcus epidermis [ATCC –13518] in relation to antibiotic susceptibility and biochemical reactions – An experimental study. J Accord Integr Med 4: 230-235.

23. Trivedi MK, Patil S (2008) Impact of an external energy on Yersinia enterocolitica [ATCC –23715] in relation to antibiotic susceptibility and biochemical reactions: An experimental study. Internet J Alternative Med 6: 2.

24. Trivedi MK, Bhardwaj Y, Patil S, Shettigar H, Bulbule A (2009) Impact of an external energy on Enterococcus faecalis [ATCC – 51299] in relation to antibiotic susceptibility and biochemical reactions – An experimental study. J Accord Integr Med 5: 119-130.

25. Nayak G, Altekar N (2015) Effect of biofield treatment on plant growth and adaptation. J Environ Health Sci 1: 1-9.

26. Ohira T, Yamamoto O (2012) Correlation between antibacterial activity and crystallite size on ceramics. Chem Eng Sci 68: 355-361.

27. Rashidi AM, Amadeh A (2009) The effect of saccharin addition and bath temperature on the grain size of nanocrystalline nickel coatings. Surf Coat Technol 204: 353-358.

28. Gusain D, Srivastava V, Singh VK, Sharma YC (2014) Crystallite size and phase transition demeanor of ceramic steel. Mater Chem Phys 145: 320-326.

29. Gaber A, Abdel-Rahim MA, Abdel-Latief AY, Abdel-Salam MN (2014) Influence of calcination temperature on the structure and porosity of nanocrystalline SnO2 synthesized by a conventional precipitation method. Int J Electrochem Sci 9: 81-95.

30. Carballo LM, Wolf EE (1978) Crystallite size effects during the catalytic oxidation of propylene on Pt/?-Al2O3. J Catal 53: 366-373.

31. Musuc AM, Razus D, Oancea D (2002) Investigation of thermal stability of some nitroaromatic derivatives by DSC. Analele Universitatii Bucuresti: Chimie 147-152.

32. Moore J (2010) Chemistry: The molecular science (4th edition), Brooks Cole.

33. Trivedi MK, Tallapragada RM, Branton A, Trivedi A, Nayak G, et al. (2015) Biofield Treatment: A potential strategy for modification of physical and thermal properties of indole. J Environ Anal Chem 2: 152.

34. Szabo L, Cik G, Lensy J (1996) Thermal stability increase of doped poly (hexadecylthiophene) by ?-radiation. Synt Met 78: 149-153.

35. Mennucci B, Martinez JM (2005) How to model solvation of peptides? Insights from a quantum-mechanical and molecular dynamics study of N-methylacetamide. I. Geometries, infrared, and ultraviolet spectra in water. J Phys Chem B 109: 9818-9829.

36. Bendz D, Tüchsen PL, Christensen TH (2007) The dissolution kinetics of major elements in municipal solid waste incineration bottom ash particles. J Contam Hydrol 94: 178-194.

37. Bergamaschi BA, Tsamakis E, Keil RG, Eglinton TI, Montluçon DB, et al. (1997) The effect of grain size and surface area on organic matter, lignin and carbohydrate concentration, and molecular compositions in Peru Margin sediments. Geochim Cosmochim ac 61: 1247-1260.

Cite this work

Researchers should cite this work as follows:

  • Trivedi MK, Tallapragada RM, Branton A, Trivedi D, Nayak G, et al. (2015) Biofield Treatment: An Effective Strategy for Modulating the Physical and Thermal Properties of O-Nitrophenol, M-Nitrophenol and P-Tertiary Butyl Phenol. J Bioanal Biomed 7: 156-163. doi:10.4172/1948-593X.1000137
     

  • Mahendra Kumar Trivedi; Rama Mohan Tallapragada; Alice Branton; Dahryn Trivedi; Gopal Nayak; Rakesh Kumar Mishra; Snehasis Jana (2019), "Biofield Treatment: An Effective Strategy for Modulating the Physical and Thermal Properties of O-Nitrophenol, M-Nitrophenol and P-Tertiary Butyl Phenol," https://diagrid.org/resources/1734.

    BibTex | EndNote

Tags