Effect of Bio Field Treatment on the Physical and Thermal Characteristics of Silicon, Tin and Lead Powders

By Mahendra Kumar Trivedi1, Shrikant Patil1, Rama Mohan Tallapragada1

1. Trivedi foundation

Published on

Abstract

Silicon, tin and lead powders belong to group IV in periodic table and exhibit decreasing semi conducting nature towards the bottom of the group. These are very useful in producing non ferrous powder metallurgy components.

In the present investigation silicon, tin and lead powders are exposed to bio field. Both the exposed and unexposed powders are later characterized by various techniques. The average particle size, after an initial decrease is found to increase with increase in number of days after treatment although the size is lee than that exhibited by untreated powder, suggesting the operation of competing mechanisms fracture and sintering. The BET surface area increased slightly in silicon powder but did not change in tin and lead powders. SEM photographs showed that samples exposed to bio field after 20 days showed fracture paths and fractures at inter and intra particle boundaries in treated powders. Thermal analysis indicated a decrease in heat of reaction and decrease in mass in treated samples.

X-ray diffraction of the powder samples indicated both increase and decrease in crystallite size, unit cell volume and molecular weight of samples exposed to bio field even after 179 days.

These results indicate that the properties of the metallic powders can be controlled even up to atomic level by exposing to bio field.

References

1. Rubik B (1994) Bioelectromagnetics applications in medicine. Alternative medicine: expanding medical horizons: a report to the National Institutes of Health on alternative medical systems and practices in the United States (NIH publication no. 94-066). US Government Printing Office, Washington DC, USA.

2. LaFleur K, Cassady K, Doud A, Shades K, Rogin E, et al. (2013) Quadcopter control in three-dimensional space using a noninvasive motor imagery-based brain–computer interface. J Neural Eng.

3. http://www.trivediscience.com/materials-science/

4. Trivedi MK, Tallapragada RM (2008) A transcendental to changing metal powder characteristics. Met Pow Rep 63: 22-28, 31.

5. Dabhade VV, Trivedi MK, Tallapragada RM (2009) Effect of external energy on the atomic, crystalline, and powder characteristics of antimony and bismuth. Bull Mat Sci 32: 5471-5479.

6. Trivedi MK, Tallapragada RM (2009) Effect of super consciousness external energy on atomic, crystalline and powder characteristics of carbon allotrope powders. Mat Res Inno 13: 473-480.

7. Trivedi MK, Patil S, Tallapragada RM (2013) Effect of Bio Field Treatment on the Physical and Thermal Characteristics of Vanadium Pentoxide Powders. J Material Sci Eng S11: 001.

Cite this work

Researchers should cite this work as follows:

  • Trivedi MK, Patil S, Tallapragada RM (2013) Effect of Bio Field Treatment on the Physical and Thermal Characteristics of Silicon, Tin and Lead Powders. J Material Sci Eng 2: 125. doi:10.4172/2169-0022.1000125
     

  • Mahendra Kumar Trivedi; Shrikant Patil; Rama Mohan Tallapragada (2019), "Effect of Bio Field Treatment on the Physical and Thermal Characteristics of Silicon, Tin and Lead Powders," https://diagrid.org/resources/1768.

    BibTex | EndNote

Tags